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1,1-Dilithiosilane and -germane, R2SiLi2 and R2GeLi2
(R = SiMetBu2) reacted with MesBCl2 to give the unexpected
seven-membered ring products, [1,3,2]oxasila- and -germabore-
panes, through the intermediate formation of >Si=B– and
>Ge=B– doubly bonded species.

Until very recently, the chemistry of compounds having a
double bond between elements of Groups 13 and 14 was limited
to the examples of boraalkenes R2C=BR0; that is, compounds
featuring a >C=B– bond, which have been intensively studied
over the past two decades.1 In contrast, the heavy analogues of
boraalkenes of the type R2E=BR (E = Si, Ge) were unknown,
partially because of the relative weakness of the >Si=B– bond,
which was calculated to be only half as strong (26.0 kcal/mol) as
the corresponding >C=B– �-bond (51.8 kcal/mol).2 Mean-
while, we have recently synthesized very effective coupling re-
agents, 1,1-dilithiosilane 13 and 1,1-dilithiogermane 2,4 interac-
tion of which with 1,1-bifunctional electrophiles resulted in the
very fast and clean formation of a variety of doubly bonded de-
rivatives containing heavier Group 14 elements.5 Using this syn-
thetic approach, quite recently we succeeded in the synthesis and
characterization of 1,3-disila-2-gallata- and -indataallenic
anions, representing the first examples of double bonds between
the heavier Group 13 and 14 elements.6 Here we report the rather
unusual reaction of 1,1-dilithiosilane and -germane 1 and 2 with
MesBCl2 in THF, leading to the formation of novel seven-mem-
bered ring compounds through the intermediate formation of the
silaborene >Si=B– and germaborene >Ge=B– species.

The reaction of 1 with an equivalent amount of MesBCl2
7

(Mes = 2,4,6-trimethylphenyl) in dry THF immediately afford-
ed a pale yellow reaction mixture, the 1HNMR spectrum of
which showed four distinct resonances for methylene protons
at 1.19, 1.61, 1.83, and 4.51 ppm, as well as signals due to the
tBu2MeSi- and mesityl groups. After evaporation of solvent,
the reaction mixture was separated by HPLC equipped with a re-
cycling reverse phase ODS column to give the seven-membered
ring compound 3, 2-(2,4,6-trimethylphenyl)-3,3-bis[di-tert-
butyl(methyl)silyl][1,3,2]oxasilaborepane, as colorless crystals
in 58% yield (Scheme 1).8 The cyclic compound 4, 2-(2,4,6-tri-
methylphenyl)-3,3-bis[di-tert-butyl(methyl)silyl][1,3,2]oxager-
maborepane, was also obtained in 50% yield by reaction of
dilithiogermane 2 with MesBCl2 under similar conditions
(Scheme 1).9

The structures of both 3 and 4 were unambiguously deter-
mined by NMR spectral data and X-ray crystallography. Thus,
the 29SiNMR spectrum of 3 displayed two signals at �63:0
and 12.3 ppm, of which the high field signal (�63:0 ppm) was
assigned to the endocyclic silicon atom in the seven-membered

ring. The X-ray crystallographic analysis revealed that 3 and 4
are isomorphous, with very similar molecular geometries
(Figure 1).10 The seven-membered rings of both 3 and 4 adopt
a twist boat-like conformation, in contrast to oxacycloheptane,11

which has a twist chair-like conformation. The Si1–B1 bond
length (2.1249(18) �A) of 3 is significantly longer than that of
lithium silylborates [Li(Ph2RSi–BH3); R = Ph, tBu] (1.984–
1.993 �A),12 while the Ge1–B1 bond length (2.1647(17) �A) of 4
is close to those of lithium germylborates [Li(Et3Ge–BPh3)]
(2.145–2.152 �A),13 which can be explained by the different
degree of steric crowding around the E–B bond.

The formation of 3 and 4 can be reasonably explained by the
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Figure 1. ORTEP drawing of 3 (30% thermal ellipsoids). Hy-
drogen atoms are omitted for clarity. Selected bond lengths
( �A) and angles (deg): Si1–B1 = 2.1249(18), Si1–Si2 =
2.4726(6), Si1–Si3 = 2.4611(6), Si1–C4 = 1.9409(16), B1–
O1 = 1.362(2), Si2–Si1–Si3 = 121.01(2), Si2–Si1–C4 =
106.49(5), Si3–Si1–B1 = 104.63(5), C4–Si1–B1 = 102.55(7),
Si1–B1–O1 = 120.08(12), Si1–B1–C23 = 128.16(12), O1–
B1–C23 = 111.23(14).
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initial formation of silaborene 5 or germaborene 6 as the key re-
active intermediates, which are stabilized by the coordination of
a THF molecule to the vacant 2pz-orbital on the B atom
(Scheme 2). Because of the different substitution pattern around
the doubly bonded atoms—the electrondonating tBu2MeSi
group on Si (or Ge) atoms and the electronwithdrawing Mes
group on B atoms of intermediates 5 and 6—both >Si=B–
and >Ge=B– double bonds are greatly polarized: >E��=B�þ–
(E = Si, Ge). Consequently, the nucleophilic Si and Ge atoms
attack the �-carbons of a coordinated THF molecule accompa-
nied with the cyclic C–O bond cleavage to form finally the sev-
en-membered ring products 3 and 4, respectively (Scheme 2).14

Indeed, the appreciable polarization of the >E=B– bond was
clearly demonstrated by NPA (natural population analysis) cal-
culations on the model compounds, (Me3Si)2E=BPh [E = Si
(7), Ge (8)], which revealed the accommodation of a large part
of the electron density on the Si (�0:246) and Ge (�0:335)
atoms, whereas the B atom has a positive charge (+0.286 for
7, +0.295 for 8, respectively).15
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